УТВЕРЖДАІ	O:
Директор	
	В.В.Новикова
« »	2020 г.

Комплект контрольно-оценочных средств по учебной дисциплине

ОП.08 Теория алгоритмов основной профессиональной образовательной программы по специальности СПО

09.02.03 «Программирование в компьютерных системах»

Комплект контрольно-оценочных средств разработан на основе Федерального государственного образовательного стандарта среднего профессионального образования по профессии СПО 09.02.03 «Программирование в компьютерных системах» и программы учебной дисциплины Теория алгоритмов.

Комплект контрольн	о-оценс	чных средств р	рассмотрен на	ПЦК
Протокол №	~<	»	20	_ Γ.
Председатель ПЦК _		/		/

СОДЕРЖАНИЕ

1.	Паспорт комплекта контрольно-оценочных средств	4
2.	Результаты освоения учебной дисциплины, подлежащие проверке	6
3.	Оценка освоения учебной дисциплины	8
	3.1. Формы и методы оценивания	8
	3.2. Типовые задания для оценки освоения учебной дисциплины	9
4.	Контрольно-оценочные материалы для итоговой аттестации по учебной	
	дисциплине	13
5.	Приложения. Задания для оценки освоения дисциплины	20

1. Паспорт комплекта контрольно-оценочных средств

В результате освоения учебной дисциплины Теория алгоритмов обучающийся должен обладать предусмотренными ФГОС по специальности СПО 09.02.03 «Программирование в компьютерных системах» следующими умениями, знаниями, которые формируют профессиональную компетенцию, и общими компетенциями:

- У 1 разрабатывать алгоритмы для конкретных задач;
- У 2 определять сложность работы алгоритмов
- 3 1 основные модели алгоритмов;
- 3 2 методы построения алгоритмов;
- 3 3 методы вычисления сложности работы алгоритмов;
- ОК 1. Понимать сущность и социальную значимость своей будущей профессии, проявлять к ней устойчивый интерес.
- ОК 2. Организовывать собственную деятельность, выбирать типовые методы и способы выполнения профессиональных задач, оценивать их эффективность и качество.
- ОК 3. Принимать решения в стандартных и нестандартных ситуациях и нести за них ответственность.
- ОК 4. Осуществлять поиск и использование информации, необходимой для эффективного выполнения профессиональных задач, профессионального и личностного развития.
- ОК 5. Использовать информационно-коммуникационные технологии в профессиональной деятельности.
- OК 6. Работать в коллективе и в команде, эффективно общаться с коллегами, руководством, потребителями.
- ОК 7. Брать на себя ответственность за работу членов команды (подчиненных), за результат выполнения заданий.
- ОК 8. Самостоятельно определять задачи профессионального и личностного развития, заниматься самообразованием, осознанно планировать повышение квалификации.

- ОК 9. Ориентироваться в условиях частой смены технологий в профессиональной деятельности.
 - ПК 1.1. Выполнять разработку спецификаций отдельных компонент.
- ПК 1.2. Осуществлять разработку кода программного продукта на основе готовых спецификаций на уровне модуля.

Формой аттестации по учебной дисциплине является ЭКЗАМЕН.

2. Результаты освоения учебной дисциплины, подлежащие проверке

2.1. В результате аттестации по учебной дисциплине осуществляется комплексная проверка следующих умений и знаний, а также динамика формирования общих компетенций:

Таблица 1.1

Результаты обучения: умения, знания и общие и профессиональные компетенции	Показатели оценки результата	Форма контроля и оценивания
Уметь:		
У 1. разрабатывать алгоритмы для конкретных задач ОК 1-9 ПК 1.1 ПК 1.2	Уметь разрабатывать алгоритмы для конкретных задач	Контрольная работа № 1 (входной контроль) – решение задач Оценка результатов практической работы. Оценка результатов внеаудиторной самостоятельной работы (индивидуальное домашнее задание). Решение задач.
У 2. определять сложность работы алгоритмов ОК 1-9 ПК 1.1 ПК 1.2	Уметь определять сложность работы алгоритмов	Контрольная работа № 2 — решение задач Оценка результатов практической работы. Оценка результатов внеаудиторной самостоятельной работы (индивидуальное домашнее задание).
Знать:		
3 1. основные модели алгоритмов ОК 1-9 ПК 1.1 ПК 1.2	Знать основные модели алгоритмов	Контрольная работа № 1 (входной контроль) – решение задач Оценка устного опроса. Оценка результатов практической работы. Оценка результатов внеаудиторной самостоятельной работы (индивидуальное домашнее задание). Решение задач.
3 2. методы построения алгоритмов ОК 1-9 ПК 1.1 ПК 1.2	Знать методы построения алгоритмов	Контрольная работа № 1 (входной контроль) – решение задач Оценка устного опроса. Оценка результатов практической работы. Оценка результатов внеаудиторной самостоятельной работы (индивидуальное домашнее задание). Решение задач.
3 3. методы вычисления сложности работы алгоритмов ОК 1-9 ПК 1.1 ПК 1.2	Знать методы вычисления сложности работы алгоритмов	Контрольная работа № 2 – решение задач Оценка устного опроса. Оценка результатов практической работы. Оценка результатов внеаудиторной самостоятельной работы (индивидуальное домашнее задание).

2.2 Требования к портфолио: не предусмотрено.

3. Оценка освоения учебной дисциплины:

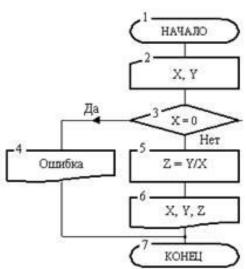
3.1. Формы и методы оценивания

Предметом оценки служат умения и знания, предусмотренные ФГОС по дисциплине Теория алгоритмов, направленные на формирование общих и профессиональных компетенций. Контроль и оценка освоения учебной дисциплины по темам.

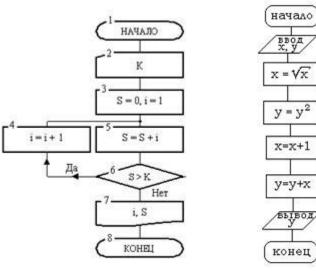
Таблица 2.2

Формы и методы контроля					
Элемент учебной	Текущий контроль Промежуточная аттестация				
дисциплины	Форма контроля	Проверяемые ОК, ПК, У, З	Форма контроля	Проверяемые ОК, ПК, У, 3	
	Раздел 1. Теория		•		
	Устный опрос	OK 1-9	Экзамен	ОК 1-9	
	Контрольная работа №1 (входной	ПК 1.1		ПК 1.1	
Тема 1.1.	контроль) – решение задач	ПК 1.2		ПК 1.2	
Основные понятия	Отчет по практической работе №1	31		31	
и определения	Отчет по практической работе №2				
	Отчет по практической работе №3				
	Защита самостоятельной работы				
	Устный опрос	OK 1-9	Экзамен	OK 1-9	
	Отчет по практической работе №4	ПК 1.1		ПК 1.1	
	Отчет по практической работе №5	ПК 1.2		ПК 1.2	
	Отчет по практической работе №6	31		31	
	Отчет по практической работе №7	32		32	
Тема 1.2.	Отчет по практической работе №8	У1		<i>V1</i>	
Представления	Отчет по практической работе №9				
алгоритмов	Отчет по практической работе №10				
алгоритмов	Отчет по практической работе №11				
	Отчет по практической работе №12				
	Отчет по практической работе №13				
	Отчет по практической работе №14				
	Отчет по практической работе №15				
	Защита самостоятельной работы				
	Устный опрос	OK 1-9	Экзамен	OK 1-9	
Тема 1.3.	Отчет по практической работе №16	ПК 1.1		ПК 1.1	
Типовые	Отчет по практической работе №17	ПК 1.2		ПК 1.2	
алгоритмы для	Отчет по практической работе №18	31		31	
решения	Отчет по практической работе №19	32		32	
различных задач	Отчет по практической работе №20	VI		VI	
	Защита самостоятельной работы				
	Устный опрос	OK 1-9	Экзамен	OK 1-9	
TD 4.4	Отчет по практической работе №21	ПК 1.1		ПК 1.1	
Тема 1.4.	Отчет по практической работе №22	ПК 1.2		ПК 1.2	
Машины Тьюринга	Отчет по практической работе №23	31		31	
	Отчет по практической работе №24	32		32	
	Защита самостоятельной работы	VI OK 1.0		yl OK 1 0	
	Устный опрос	OK 1-9	Экзамен	OK 1-9	
Тема 1.5.	Отчет по практической работе №25	ПК 1.1		ПК 1.1	
Рекурсивные	Отчет по практической работе №26	ПК 1.2		ПК 1.2	
функции	Защита самостоятельной работы	31		31	
		32		32	
TF 1.6	17 v	yl		VI	
Тема 1.6.	Устный опрос	OK 1-9	Экзамен	OK 1-9	
Нормальные	Отчет по практической работе №27	ПК 1.1		ПК 1.1	
алгоритмы	Отчет по практической работе №28	ПК 1.2		ПК 1.2	

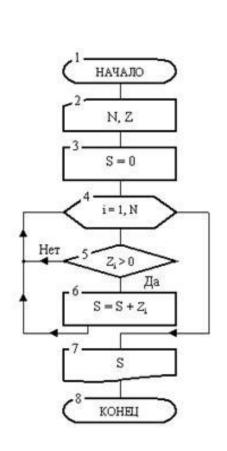
Маркова	Защита самостоятельной работы	31		31
		32		32
		У1		<i>Y1</i>
Тема 1.7.	Устный опрос	ОК 1-9	Экзамен	OK 1-9
	Отчет по практической работе №29	ПК 1.1		ПК 1.1
Гибкие алгоритмы.	Защита самостоятельной работы	ПК 1.2		ПК 1.2
Алгоритмически		31		31
неразрешимые		32		32
задачи		У1		<i>Y1</i>
	Раздел 2. Исследование алгоритмов			
	Устный опрос	ОК 1-9	Экзамен	OK 1-9
	Контрольная работа №2 – решение	ПК 1.1		ПК 1.1
Тема 2.1. задач		ПК 1.2		ПК 1.2
Сложность и Отчет по практической работе №30		31		31
трудоемкость	Отчет по практической работе №31	32		32
алгоритмов	Отчет по практической работе №32	33		33
	Отчет по практической работе №33	У1		<i>Y1</i>
	Защита самостоятельной работы	<i>y</i> 2		<i>y</i> 2

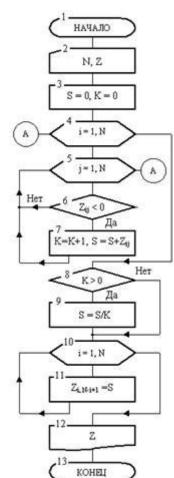

3.2. Типовые задания для оценки освоения учебной дисциплины

3.2.1. Типовые задания для оценки знаний, умений


1) Контрольная работа №1 (входной контроль) - решения задач 31, 32, У1

Дана блок-схема алгоритма. Определить результат выполнения алгоритма. Сформулировать задачу.


1.



2. 3.

4. 5.

КРИТЕРИИ ОЦЕНКИ

Каждое задание оценивается в 20 баллов.

Баллы суммируются и переводятся в оценку по пятибалльной шкале:

Оценка «5» – 90-100 баллов.

Оценка (4» - 80-90 баллов.

Оценка «3» - 70 - 80 баллов.

Оценка «2» – менее 70 баллов.

ЭТАЛОНЫ ПРАВИЛЬНЫХ ОТВЕТОВ

- 1. Находит значение функции z = y/x.
- 2. Указывает наименьшее количество членов ряда натуральных чисел 1, 2, 3, ..., сумма которых больше числа К.
- 3. Находит значение функции у.
- 4. Накопление суммы положительных элементов одномерного массива Z длины N (под длиной массива понимается количество его элементов).
- 5. Сортировка массива расположение его элементы в порядке роста или убывания.

2) Контрольная работа №2 - решения задач 31, 32, 33, У1, У2

- 1. Найти произведение положительных, сумму и количество отрицательных из 10 введенных целых значений.
- 2. Деду М лет, а внуку N лет. Через сколько лет дед станет вдвое старше внука. И сколько при этом лет будет деду и внуку.
- 3. Лягушка каждый последующий прыжок делает в два раза короче предыдущего. Достигнет ли она болота и за сколько прыжков. Длину первого прыжка задайте самостоятельно.
- 4. Дан массив A, состоящий из N элементов. Элементы массива произвольные целые числа. Распечатать элементы в две строки: в первой строке элементы с нечетными индексами, а во второй элементы с четными индексами.
- 5. Дан двумерный массив размерностью NxM, заполненный случайным образом. Определить, есть ли в данном массиве строка, в которой имеется два элемента массива, имеющие наибольшее значение.

КРИТЕРИИ ОЦЕНКИ

Каждое задание оценивается в 20 баллов.

Баллы суммируются и переводятся в оценку по пятибалльной шкале:

Оценка «5» – 90-100 баллов.

Оценка «4» – 80-90 баллов.

Оценка «3» - 70 - 80 баллов.

Оценка «2» – менее 70 баллов.

Раздел 1. Теория алгоритмов

Тема 1.1. Основные понятия и определения

Устный опрос

- 1. Основные модели алгоритмов.
- 2. Определения алгоритмов.
- 3. Исполнитель алгоритма.
- 4. Примеры алгоритмов в жизни.
- 5. Формальные признаки алгоритмов.

6. Классификация алгоритмов по видам и форме.

Тема 1.2. Представления алгоритмов

Устный опрос

- 1. Методы построения алгоритмов.
- 2. Классификация представлений алгоритмов.
- 3. Схемы алгоритмов.
- 4. ΓΟCT 19.701-90.
- 5. Составление алгоритмов различных видов и форм.

Тема 1.3. Типовые алгоритмы для решения различных задач Устный опрос

- 1. Алгоритмы множественного выбора.
- 2. Алгоритмы поиска и сортировки в одномерных массивах.
- 3. Алгоритмы обработки данных в двумерных массивах.
- 4. Вспомогательные алгоритмы.
- 5. Вызов вспомогательных алгоритмов из основного алгоритма.
- 6. Фактические и формальные параметры. Рекурсивные алгоритмы

Тема 1.4. Машины Тьюринга

Устный опрос

- 1. Определение, применение, конструирование машин Тьюринга.
- 2. Правильная вычислимость функций и композиция машин Тьюринга.
- 3. Вычислимые по Тьюрингу функции.
- 4. Тезис Тьюринга

Тема 1.5. Рекурсивные функции

Устный опрос

- 1. Тезис Черча.
- 2. Примитивно рекурсивные функции.
- 3. Оператор минимизации.

Тема 1.6. Нормальные алгоритмы Маркова

Устный опрос

- 1. Нормальные алгоритмы и их применение.
- 2. Принцип нормализации Маркова.
- 3. Эквивалентность различных теорий алгоритмов.

Тема 1.7. Гибкие алгоритмы. Алгоритмически неразрешимые задачи Устный опрос

- 1. Стохастические и эвристические гибкие алгоритмы.
- 2. Алгоритмически неразрешимые задачи.
- 3. Существование невычислимых функций.
- 4. Теорема Райса.

Раздел 2. Исследование алгоритмов

Тема 2.1. Сложность и трудоемкость алгоритмов

Устный опрос

- 1. Методы вычисления сложности работы алгоритмов.
- 2. Основные термины и определения.
- 3. Проверка алгоритмов на завершаемость и результативность.
- 4. Классы сложности алгоритмов.
- 5. Оценка трудоемкости алгоритмов.
- 6. Поиск оптимальных алгоритмов.
- 7. Минимизация используемых ресурсов
- 3) Практическая работа методические рекомендации к выполнению практических работ.
- 4) Самостоятельная работа методические рекомендации по организации и методическому сопровождению самостоятельной работы студентов.

4. Контрольно-оценочные материалы для итоговой аттестации по учебной дисциплине

Предметом оценки являются умения и знания. Контроль и оценка осуществляются с использованием следующих форм и методов: проведение практических занятий, устного опроса, а также выполнения обучающимися индивидуальных заданий.

Оценка освоения дисциплины предусматривает использование накопительной системы оценивания и проведение экзамена.

І. ПАСПОРТ

Назначение:

КОМ предназначен для контроля и оценки результатов освоения учебной дисциплины «Теория алгоритмов» по специальности 09.02.03 «Программирование в компьютерных системах».

- В результате освоения учебной дисциплины обучающийся должен уметь:
 - У 1 разрабатывать алгоритмы для конкретных задач;
 - У 2 определять сложность работы алгоритмов
- В результате освоения учебной дисциплины обучающийся должен знать:
 - 3 1 основные модели алгоритмов;
 - 3 2 методы построения алгоритмов;
 - 3 3 методы вычисления сложности работы алгоритмов;

II. ЗАДАНИЕ ДЛЯ ЭКЗАМЕНУЮЩЕГОСЯ

Вариант 1

Инструкция для обучающихся

Внимательно прочитайте задание.

Рационально распределите время на выполнение всех заданий

Выполните задания в соответствии с поставленными условиями.

Время выполнения задания – 2 часа.

Задание

I. Выберите в каждом задании только один вариант ответа:

- 1. Что из перечисленного не является примером алгоритма в жизни?
 - 1) текст песни;

- 3) инструкция по оказанию первой помощи;
- 2) подробный кулинарный рецепт;
- 4) схема проезда.

2.	Что из перечисленного не является формал	• • • • • • • • • • • • • • • • • • • •
	1) детерминированность;	3) завершаемость;
	2) понятность;	4) образность.
3.	В каком виде алгоритма при любых входнь	іх данных какое-то из действий не выполняется?
	1) линейный;	3) циклический;
	2) разветвляющийся;	4) ни в каком.
4.	Что из перечисленного не является способо	ом представления алгоритма?
	1) код программы;	3) пейзаж;
	2) блок-схема;	4) псевдокод.
5.	Какой геометрической фигурой согласн	о ГОСТ 19.701-90 обозначаются данные без
	уточнения их носителя?	
	1) круг;	3) параллелограмм;
	2) прямоугольник;	4) ромб.
6.	Сколько выходов согласно ГОСТ 19.701-90	имеет блок «Решение»?
	1) один;	3) три;
	2) два;	4) не менее двух.
7.	Как называется алгоритм, вызываемый	и из основного алгоритма для выполнения
	однотипных повторяющихся задач?	
	1) вспомогательный;	3) возвратный;
	2) удаленный;	4) рекурсивный.
8.	Что из перечисленного не входит в описани	не машины Тьюринга?
	1) алфавит;	3) правила работы;
	2) перечень состояний;	4) длина ленты.
9.		«A {a0, 0, 1, 2, 3, 4, 5, 6, 7}». На работу в каких
	системах счисления может быть запрограм	
	1) десятичная;	3) любая с основанием не более 8;
	2) восьмеричная;	4) невозможно определить.
10.	- · · · · · · · · · · · · · · · · · · ·	граммирования не соответствует множеству
	примитивно рекурсивных функций?	
	1) цикл for;	3) условие if;
	2) цикл while;	4) оператор присвоения.
11.		пияет ли последовательность записи формул
	подстановки на результат работы алгоритм	
	1) не влияет;	3) влияет всегда;
10		4) запрещается менять местами формулы.
12.		инственную формулу: «а \rightarrow b (стоп)». Какая из
	строк, перечисленных ниже, не может быть	
	1) «bba»;	3) «baa»;
10	2) «bab»;	4) «abb».
13.	Какие алгоритмы не относятся к механичес	
	1) стохастические;	3) верны варианты 1 и 2;
1.4	2) эвристические;	4) никакие из перечисленных.
14.		, который с определенной вероятностью дает
	верный результат за конечное число шагов	
	1) Баден-Баден;	3) Сан-Франциско;
15	2) Jac-Berac;	4) Монте-Карло.
15.		тм поиска наибольшего (наименьшего) элемента
	в неотсортированном массиве данных?	$(2) \cap (n^2)$
	1) O (log n);	3) O (n^2);
	/ 1	44 1 4 4 1 1 1 1

II. Выполните следующие задания на чистых листах бумаги (допускается использование листов в клетку). Оформление блок-схем должно соответствовать ГОСТ 19.701-90:

- 1. На вход алгоритма подаются три числа: a, b, c. На выходе алгоритма должно быть значение наибольшего из них. Разработать алгоритм для решения поставленной задачи. Алгоритм оформить в виде блок-схемы.
- 2. На вход алгоритма подаются длина массива n и значения элементов массива a[n]. На выходе алгоритма должен быть массив a[n], отсортированный по убыванию. Разработать алгоритм для решения поставленной задачи. Алгоритм оформить в виде блок-схемы.
- 3. Определить временную сложность работы алгоритма из задания 2 и написать общую формулу времени работы этого алгоритма. Ответ обосновать.

Вариант 2

Инструкция для обучающихся

Внимательно прочитайте задание.

Рационально распределите время на выполнение всех заданий

Выполните задания в соответствии с поставленными условиями.

Время выполнения задания – 2 часа.

2) напечатать символ;

9.

Зада	ание	
I. Bı	ыберите в каждом задании только один в	зариант ответа:
1.		альная система, способная выполнить действия,
	1) исполнитель алгоритма;	3) программа;
	2) компьютер;	4) машина Тьюринга.
2.	, 1	льным признаком (свойством) алгоритма?
	1) дискретность;	3) наполненность;
	2) массовость;	4) результативность.
3.	В каком виде алгоритма некоторые дейст	вия могут выполняться более одного раза?
	1) линейный;	3) циклический;
	2) разветвляющийся;	4) ни в каком.
4.	Алгоритмы могут записываться с помощь	ю языков программирования. Какое слово не
	подходит для описания языков программи	
	1) формальный;	3) стандартизованный;
	2) искусственный;	4) произвольный.
5.	Какой геометрической фигурой согласно	ГОСТ 19.701-90 обозначаются функции
	обработки данных любого вида (процессь	ı)?
	1) круг;	3) параллелограмм;
	2) прямоугольник;	4) ромб.
6.	Какие направления потока данных и пото	ка управления согласно ГОСТ 19.701-90
	считаются стандартными и могут не обозн	начаться стрелками?
	1) слева направо и снизу вверх;	3) слева направо и сверху вниз;
	2) справа налево и снизу вверх;	4) справа налево и сверху вниз.
7.	Как называется алгоритм, который может	вызывать сам себя до тех пор, пока не
	выполнится определенное условие?	
	1) вспомогательный;	3) возвратный;
	2) удаленный;	4) рекурсивный.
8.	Что из перечисленного не является коман	дой машины Тьюринга и не входит в таблицу
	правил ее работы?	
	1) пропустить ячейку;	3) сдвинуть головку;

На вход машины Тьюринга подается десятичное число. Требуется написать справа от числа «+», если число четное, и «-» в противном случае. Какое минимальное количество

4) сменить состояние.

	состояний машины Тьюринга (включая сос	тояние останова) потребуется для выполнения
	этой задачи?	, <u> </u>
	1) одно;	3) три;
	2) два;	4) четыре.
10.	Что возвращает примитивно рекурсивная ф	/ 1
	1) ничего не возвращает ноль;	•
	2) ноль;	
	3) любое число;	
	4) натуральное число, большее на еди	іницу.
11.	Сколько заключительных формул должно	•
	1) столько, сколько требуется;	3) две;
	2) одна;	4) ни одной.
12.	Нормальный алгоритм Маркова имеет един	иственную формулу: «ba → ab». Какая из строк
	перечисленных ниже, может быть результа	
	1) «baab»;	3) «aabb»;
	2) «abab»;	4) «bbaa».
13.	Какое из утверждений верно?	
	1) существуют алгоритмы для любой	задачи, все функции можно вычислить;
	2) некоторые задачи алгоритмически	неразрешимы, все функции можно вычислить;
	3) существуют алгоритмы для любой	задачи, некоторые функции невычислимы;
	4) некоторые задачи алгоритмически	неразрешимы, некоторые функции
	невычислимы.	
14.		оторый гарантированно дает верный результат
	за неопределенное число шагов?	
	1) Баден-Баден;	3) Сан-Франциско;
	2) Лас-Вегас;	4) Монте-Карло.
15.	Какую временную сложность имеет алгори	
	1) O (log n);	3) O (n^2) ;
	2) O (n);	4) O (n^3) .
II D	В полнита спанующие запания не инсту	х листах бумаги (допускается использовани
LI. D	обинолийн следующие задания на чисты	улистал бумаги (допускается использовани

e листов в клетку). Оформление блок-схем должно соответствовать ГОСТ 19.701-90:

- На вход алгоритма подаются три числа: а, b, с. На выходе алгоритма должно быть 1. значение наименьшего из них. Разработать алгоритм для решения поставленной задачи. Алгоритм оформить в виде блок-схемы.
- На вход алгоритма подаются длина массива п и значения элементов массива а[п]. На 2. выходе алгоритма должен быть массив а[n], отсортированный по возрастанию. Разработать алгоритм для решения поставленной задачи. Алгоритм оформить в виде блоксхемы.
- 3. Определить временную сложность работы алгоритма из задания 2 и написать общую формулу времени работы этого алгоритма. Ответ обосновать.

III. ПАКЕТ ЭКЗАМЕНАТОРА

III а. УСЛОВИЯ

Количество человек в группе - 20

Количество вариантов задания -2.

Время выполнения задания – 2 часа.

Оборудование: экзаменационная ведомость, ПЭВМ.

Дисциплина: Теория алгоритмов.

Фамилия, имя, отчество преподавателя:

Группа	_, курс	, семестр
--------	---------	-----------

Дата проведения:

№ п/п	Ф.И.О. студента	№ зачетной книжки	Отметка о сдаче экзамена	Подпись преподавателя
1.				
2.				
3.				
4.				
5.				
6.				
7.				

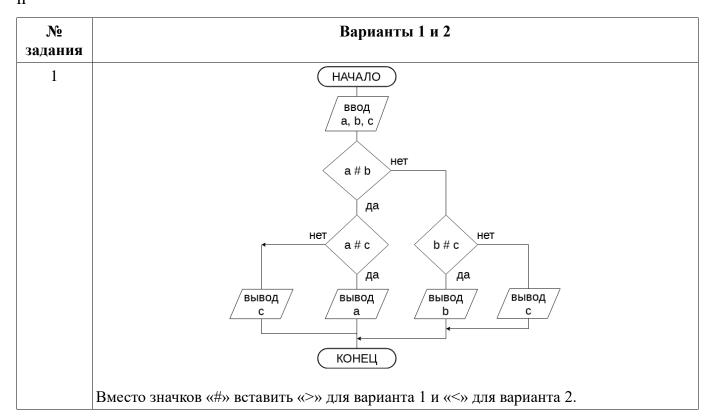
Шб. КРИТЕРИИ ОЦЕНКИ

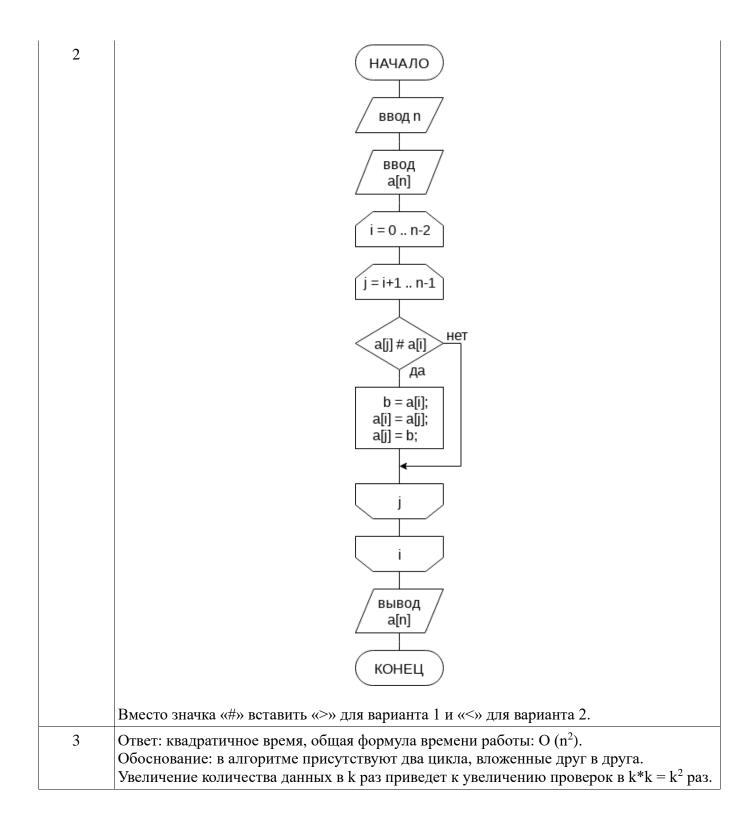
Критерии оценки результатов экзамена по дисциплине «Теория алгоритмов»

Каждое задание оценивается определенным количеством баллов, указанных в таблице:

Задание	Максимальное количество баллов в разделе	Критерии
I	30	Каждое правильно выполненное задание оценивается по 2 балла.
II	70	Задание 1. Максимальное количество баллов — 30. За незначительные недочеты в структуре блок-схемы снимается 5 баллов. За недостатки в оформлении снимается ещё 5 баллов Задание 2. Максимальное количество баллов — 30. За незначительные недочеты в структуре блок-схемы снимается 5 баллов. За недостатки в оформлении снимается ещё 5 баллов Задание 3. Максимальное количество баллов — 10. За отсутствие обоснования снимается 5 баллов. Задание не оценивается, если не решено задание 2.

Баллы суммируются и переводятся в оценку по пятибалльной шкале согласно таблице:


Процент результативности (правильных ответов)	Качественная оценка индивидуальных образовательных достижений	
	балл (отметка)	вербальный аналог
90 ÷ 100	5	отлично
80 ÷ 89	4	хорошо
70 ÷ 79	3	удовлетворительно
менее 70	2	не удовлетворительно


ЭТАЛОНЫ ПРАВИЛЬНЫХ ОТВЕТОВ

I.

№ задания	Вариант 1	Вариант 2
1	1	1
2	4	3
3	2	3
4	3	4
5	3	2
6	4	3
7	1	4
8	4	1
9	3	3
10	2	4
11	2	1
12	4	3
13	3	4
14	4	2
15	2	1

II

5. Приложения. Задания для оценки освоения дисциплины

Темы	Формы контроля			
Раздел 1. Теория алгоритмов				
Тема 1.1. Основные понятия и определения	Контрольная работа №1 (входной контроль) — решение задач Устный опрос Оценка результатов практической работы. Оценка результатов внеаудиторной самостоятельной работы (индивидуальное домашнее задание).			
Тема 1.2. Представления алгоритмов	Устный опрос Оценка результатов практической работы. Оценка результатов внеаудиторной самостоятельной работы (индивидуальное домашнее задание).			
Тема 1.3. Типовые алгоритмы для решения различных задач	Устный опрос Оценка результатов практической работы. Оценка результатов внеаудиторной самостоятельной работы (индивидуальное домашнее задание).			
Тема 1.4. Машины Тьюринга	Устный опрос Оценка результатов практической работы. Оценка результатов внеаудиторной самостоятельной работы (индивидуальное домашнее задание).			
Тема 1.5. Рекурсивные функции	Устный опрос Оценка результатов практической работы. Оценка результатов внеаудиторной самостоятельной работы (индивидуальное домашнее задание).			
Тема 1.6. Нормальные алгоритмы Маркова	Устный опрос Оценка результатов практической работы. Оценка результатов внеаудиторной самостоятельной работы (индивидуальное домашнее задание).			
Тема 1.7. Гибкие алгоритмы. Алгоритмически неразрешимые задачи	Устный опрос Оценка результатов практической работы. Оценка результатов внеаудиторной самостоятельной работы (индивидуальное домашнее задание).			
Раздел 2. Исследование алгоритмов				
Тема 2.1. Сложность и трудоемкость алгоритмов	Контрольная работа №2 — решение задач Устный опрос Оценка результатов практической работы. Оценка результатов внеаудиторной самостоятельной работы (индивидуальное домашнее задание).			